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Outline

Ongoing build-up to complete (nonlinear) wave-to-wire FEM
within Firedrake using (time-discrete) VPs with nontrivial damping
of the electric circuits and energy-harvesting load:
I Grand continuum variational principle (VP) entire model plus

non-conservative terms.

Implementation hierarchy:
I time-discrete VP for (hanging and driven) nonlinear

buoy-generator model
I (time-discrete VP with inequality constraint for bouncing ball

under gravity with Z ≥ 0)
I time-discrete VP for water and buoy at rest, in hydrostatic

balance
I time-discrete VP for water waves and buoy in motion
I then full coupled model should work . . . ?
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Why variational principles (VPs)? Advantages:

I When the (main) dynamics has a VP, multiple coupled
equations are succintly described by one space-time VP.

I Associated with a VP are conservation properties of the
resulting PDEs/ODEs.

I Within the (finite-element) environment Firedrake, the
time-discrete VP can be implemented directly, with
automated generation of (complicated 3D+1D) weak forms of
the equations.

I Advantages: enormous reduction in development time,
efficient, flexible, higher-order spectrally-accurate space
discretisations plus (automatic) preservation of discrete forms
of conservation properties.

I VP for 3D+1D nonlinear water waves as potential flow:
implemented and tested (Choi et al. 2024, Lu et al. 2024).

I Time discetisation: second-order implicit modified-midpoint
scheme (MMP).
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Grand VP of wave-to-wire model

Equations of motion follow from variational principle (red=waves,
blue=buoy, green=EM-generator, coupling, B. et al. 2019):
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velocity u = ∇φ(x , y , z , t), depth h(x , y , t), rest depth H0, buoy
hb(Z , y) = Z − Kh − tan θ(Ly − y), piston R(t), coupling function
γmG (Z ) = K ′(Z ), buoy mass M, keel height Kh, buoy coordinate
Z (t), buoy velocity W (t) = Ż , charge Q(t), current I (t) = Q̇.
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Grand VP: PDEs

I Potential-flow water-wave dynamics (Laplace equation in
interior, kinematic & Bernoulli equations at free surface):

δφ : ∇2φ = 0 in Ω

(δφ)|z=h : ∂th +∇φ · ∇h = φz at z = h

δh : ∂tφ+
1

2
|∇φ|2 + g(z − H0)− λ = 0 at z = h.

I Coupled elliptic Laplace equation to hyperbolic free-surface
equations, plus a (Lagrange) multiplier λ.
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Grand VP: inequality constraint & ODEs

I Karush-Kuhn-Tucker inequality conditions satisfied at every
space-time x , y , t-position are (Burman et al. 2023):

δλ : λ = −[γ(h − hb)− λ]+ = −F+(γ(h − hb)− λ)

=⇒h(x , y , t)− hb(Z , y) ≤ 0, λ ≤ 0, λ(h − hb) = 0.

I Add resistance Ri ,Rc & Shockley load Vs(|I |) to submodel:

δW : Ż =W ,

δZ : MẆ =−Mg−γmG (Z )I −
∫ Lx

0

∫ ly (x)

0
λ dydx

δI : Q̇ =I ,

δQ; Li İ =γmG (Z )Ż−(Ri + Rc)I − I

|I |
VS(|I |).
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VP buoy-motor

The full modified midpoint time-discrete variational principle for
the single-coil model reads
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Terms stemming from K (Z ) (implementation ito VP does not
work in FD) implemented into two weak equations.
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VP buoy-motor

I Variations taken wrt {Zn+1/2,Qn+1/2,W n+1/2}, augmented
with Zn+1 = Zn+1/2 − Zn,W n+1 = 2W n+1/2 −W n, In+1 = 2In+1/2 − In (“replace”)
plus Qn+1 = Qn + ∆tIn+1/2, (Gagarina 2014, Choi et al. 2024).

I So, {Zn+1,W n+1, I n+1} eliminated after variations have been
taken using mid-point definitions. SE & MMP same:
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Vertically-falling ball under gravity with Z (t) ≥ 0

Continuous in time:
I VP of falling ball with unit mass M = 1 without constraint:

0 =δF = δ

∫ T

0
L(Z ,W )dt ≡ δ

∫ T

0
WŻ − 1

2
W 2 − Z dt,

≡ lim
ε→0

∫ T

0

L(Z + εδZ ,W + εδW )− L(Z ,W )

ε
dt

time t, acceleration g = 1, kinetic & potential energy MgZ .
I Minimisation problem with virtual changes zp = δZ and

wp = δW , i.e. δZ (0) = δZ (T ) = 0.
I Newton’s equations for position Z (t) and velocity W (t) ≡ Ż :

0 =

∫ T

0
(Ż −W )δW − (Ẇ + 1)δZ dt : Ż = W , Ẇ = −1.

LIFD

Wave-to-wire wave-energy FEM in Firedrake



Outline Grand VP VP buoy-motor VP bouncing ball VP buoy-water at rest: - VP buoy-water-motion:- To do

Vertically-falling ball under gravity with Z (t) ≥ 0

Continuous in time:
I VP of falling ball with inequality constraint:

0 =δ

∫ T

0
L(Z ,W )dt

≡δ
∫ T

0
WŻ − 1

2
W 2 − Z − 1

2γ

(
F+(−γZ − λ)2 − λ2

)
dt,

I Resulting equations:

δW : Ż =W

δZ : Ẇ =− 1− λ
δλ : λ =− F+(−γZ − λ)F ′

+(−γZ − λ)

=− F+(−γZ − λ)⇐⇒ −Z ≤ 0, λ ≤ 0, λZ = 0.
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Vertically-falling ball: smoothing

For b > 0, approximations of F+ include:

F+(q) =
1

2
q +

√
b2 +

1

4
q2 →b→0 max(q, 0) with

F ′
+(q) =

1

2
+

1
4q√

b2 + 1
4q

2
→b→0 Θ(q) or

F+(q) =ln(1 + ebq)/b →b→0 max(q, 0). (2)

Hence,

λ =− F+(−γZ − λ) = −
(
−

1

2
(γZ + λ) +

√
b2 + (γZ + λ)2/4

)
⇐⇒

1

2
(λ− γZ) = −

√
b2 + (γZ + λ)2/4 =⇒

−γZλ =b2
for Z ≥ 0⇐⇒ λ = −

b2

γZ
for Z ≥ 0.
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Vertically-falling ball: phase plot

Therefore, equations become as follows and can be solved

Ż = W , Ẇ = −1 +
b2

γZ
⇐⇒ Z̈ =− 1 +

b2

γZ
=⇒

d

dt

(
1

2
W 2 + Z − b2

γ
lnZ

)
=0⇐⇒

1

2
W 2 + Z − b2

γ
lnZ =H0

with integration constant/energy H0 = H(t). When W = 0
maximum Z = Zmax satisfies Zmax − b2/(γZmax) = H0 with as
first approximation Zmax ≈ H0 = H1 − b2/(γ) lnH1, where
1
2W

2 + Z = H1. Make phase plot in (Z ,W )-plane:
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Vertically-falling ball: phase plot
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Vertically-falling ball under gravity with Z (t) ≥ 0

Time discrete VP:

I 2nd -order modified mid-point VP of falling ball with
constraint:

0 =δ
(
W n+1/2Z

n+1 − Zn

∆t
− Zn+1/2W

n+1 −W n

∆t

− 1

2
(W n+1/2)2 − Zn+1/2 − 1

2γ

(
F+(−γZn+1/2 − λ)2 − λ2

))
with additional relations

Zn+1 =2Zn+1/2 − Zn and W n+1 = 2W n+1/2 −W n.
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Vertically-falling ball under gravity with Z (t) ≥ 0

I Resulting time-discrete equations (variations wrt
Zn+1/2,W n+1/2):

δW n+1/2 : Zn+1 =Zn + ∆tW n+1/2 =⇒

Zn+1/2 = Zn +
1

2
∆tW n+1/2

δZn+1/2 : W n+1 =W n −∆t(1 + λ)

=⇒ 4(Zn+1/2 − Zn)

∆t
=2W n −∆t(1 + λ)

δλ : λ = −F+(−γZn+1/2 − λ)F ′
+(−γZn+1/2 − λ).
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Vertically-falling ball under gravity with Z (t) ≥ 0
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VP buoy and water at rest

Strategy on rest-flow buoy-water surface coupling:

I Goal is to solve Bernoulli & KKT inequality equations:

δh : g(z − H0)− λ = 0 at z = h.

δZ :

∫ Lx

0

∫ ly (x)

0
λdydx + Mg = 0

δλ : λ = −[γ(h − hb(Z , y))− λ]+ = −F+(γ(h − hb(Z , y))− λ)

=⇒h(y , t)− hb(Z , y) ≤ 0, λ ≤ 0, λ(h − hb(Z , y)) = 0.

with hb(Z , y) = Z − Kh − tan θ(Ly − y).
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VP buoy and water at rest

I Solve VP for h(x , y),Z and λ-equation with F+(q) = ln(1 + eaq)/b

(buoy of finite extent Lw ):

0 =δ

(∫ Lx

0

∫ ly (x)

0
gh(

1

2
h − H0) + λ(hb(Z , y)− h) dydx + MgZ

)
δλ : 0 =

∫ Lx

0

∫ ly (x)

0

(
λ +

{
F+(γ(h − hb)− λ) Ly − Lw < y < Ly

0 y ≤ Ly − Lw

)
δλ dydx
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VP dynamic buoy and water motion (BLE for dispersion)

Strategy on buoy-water surface coupling (work in progress):

I Goal is to solve Bernoulli & KKT inequality equations:

δh : ∂tφ+ · · ·+ 1

2
|∇φ|2 + g(z − H0)− λ = 0 at z = h.

δφ : ∂th + · · ·+∇ · (h∇φ) = 0, . . .

δZ : MẆ +

∫ Lx

0

∫ ly (x)

0
λdydx + Mg = 0

δλ : λ = −[γ(h − hb(Z , y))− λ]+ = −F+(γ(h − hb(Z , y))− λ)

=⇒h(x , y , t)− hb(Z , y) ≤ 0, λ ≤ 0, λ(h − hb(Z , y)) = 0.

with hb(Z , y) = Z − Kh − tan θ(Ly − y).
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VP dynamic buoy and water motion (BLE for dispersion)

Strategy on buoy-water surface coupling (work in progress):

I Solve VP for h(x , y),Z and imposed, solved, separated
λ-solution (buoy has been given finite extent Lw ; R(t) = 0):

0 =δ

(∫ Lx

0

∫ ly (x)

0

∫ hn+1/2

0
−

1

2
|∇φn+1/2|2dz + φ

n+1/2
s

(hn+1 − hn)

∆t
− hn+1/2 (φn+1

s − φn
s )

∆t
+ . . .

− ghn+1/2(
1

2
hn+1/2 − H0)− λ(hb(Zn+1/2

, y)− hn+1/2) dydx

+ MW n+1/2 (Zn+1 − Zn)

∆t
− MZn+1/2 (W n+1 −W n)

∆t
−

1

2
M(W n+1/2)2 − MgZn+1/2

δλ : 0 =

∫ Lx

0

∫ ly (x)

0

(
λ +

{
F+(γ(hn+1/2 − hb(y, Zn+1/2))− λ)) Ly − Lw < y < Ly

0 y ≤ Ly − Lw

)
δλ dydx

with F+(q) = ln(1 + eaq)/b. Rest flow in dynamic case stays
rest flow!
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To do

I time-discrete VP for water waves and buoy in motion
I then then full coupled model should work . . . ?
I : Use the in-build Firedrake inequality solvers? Not

geometric in time. Other (non- ) time integrators?
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Thank you very much for your attention ...

I B., Zweers 2013: Proof of principle 2013 https://www.youtube.com/watch?v=SZhe_SOxBWo&t=254s
I B., Kalogirou, Zweers 2019: From bore-soliton-splash to a new wave-to-wire wave-energy model. Water

Waves 1 10.1007/s42286-019-00022-9 Bore-soliton-splash:
https://www.youtube.com/watch?v=YSXsXNX4zW0&list=FL6mc7mUa6M4Bo2VkD970urw

I Choi, Kalogirou, Lu, B., Kelmanson 2024: A study of extreme water waves using a hierarchy of models
based on potential-flow theory. Water Waves https://doi.org/10.1007/s42286-024-00084-4

I B., Bolton, Thompson, Geometric power optimisation of a rogue-wave energy device in a (breakwater)

contraction. 8th IEEE Conference on Control Technology & Applications (CCTA) (2024) 6 pp. Preprint
https://eartharxiv.org/repository/view/7260/
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