Wetropolis flood investigator

Onno Bokhove [et al.] £€: EPSRC Maths Foresees/DARE/CDT Fluid Dynamics

Leeds Institute for Fluid Dynamics, UK -04-07-2024

On waves On floods Wetropolis' weather Wetropolis models Wetropolis investigator Dealing with uncertainty ooo

Outline

On the fluid dynamics and statistics of:

- water waves,
- Wetropolis flood investigator.

Modelling extremely high water waves

- Origin 2010 bore-soliton-splash:
- Definition rogue/extreme waves: $AI = H_r/H_s > 2.$
- To what extent do exact but idealised extreme- or rogue-wave solutions survive in more realistic settings?
- Will such extreme waves fall apart due to dispersion or other mechanisms?
- Use fourfold and ninefold KP amplifications of interacting solitons/cnoidal waves.
- What do you think: will we be able to reach the ninefold wave amplification in more realistic calculations or in reality?

Results simulation three-soliton interaction (dimensional)

Crossing seas (4 or 8 domains combined -YouTube)

Coastal wave tank: coastal defense systems

- ► JBA Trust demo (10M views): https://www.youtube.com/watch?v=3yNoy4H2Z-o
- Fossbytes link (112M views):

https://www.facebook.com/watch/?v=1151082355697392

MSc-CDT team project JBA Trust 2015, design:

https://github.com/obokhove/MathslaboratoryUoL/tree/master/wavetank

On Wetropolis flood investigator

Inspiration for Wetropolis: Boxing Day 2015 floods of the River Aire in Leeds

Tour of Wetropolis

Goal: visualising return period/Annual Exceedance Probability (request EA & JBA Trust). *Tour* (DARE) & *superflood* (MPE):

Legacy of our work on flooding

- REF Impact case study ICS 2021: Wetropolis & flood-mitigation effectiveness tool for decision-makers.
- Analysis Leeds' public 2017 Flood-Alleviation Scheme II: led to graphical flood-mitigation cost-effectiveness tool, laying bare inconsistencies in FASII. Duly reported w. no/little response; arxived reports led to several complaints in 2018-2021, in essence refuted in ICS 2022.
- Corroboration cost-effectiveness tool: flood cases in France & Slovenia
- Tool shows that efficacy of Natural Flood Management small to minute, e.g. beaver dams, somewhat contrary to overstated promotion of NFM & beavers by Environment Agency, council & media.
- Impact Case Study (flood link): https://results2021.ref.ac.uk/impact/ submissions/1eedb5bd-8f92-4737-a6f0-1e61c997e4f0/impact

LIFD

Graphical cost-effectiveness tool for flood mitigation

LIFD

Graphical cost-effectiveness tool: three-panel graphs

Flood-mitigation measures, but which ones to choose?

- Higher walls (HW)
- Flood-plain storage (FPS): dynamic using weirs and optimal control (underdeveloped)
- Giving-room-to-the-river (GRR)
- Natural Flood Management (NFM): tree planting, peat land, leaky dams

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

- Beaver colonies
- Sustainable urban drainage systems (SUDS)
- Dredging
- Resilience?

Higher flood defence walls – HW (2m high proposed in Leeds):

Giving-room-to-the-river - GRR:

Giving-room-to-the-river – GRR, extra channel in River Aire at *Aire River at Kirkstall The Forge* (Leeds):

Giving-room-to-the-river – GRR, extra channel in River Waal/Rhine Nijmegen (NL):

= 240

Flood-plain storage -FPS & dynamic weir control:

Extra storage –FPS active flooding of certain areas (Merwede, Storm Ciara, NL, $20 Mm^3$?):

Natural flood management – NFM 1300 leaky dams & trees (public engagement & co-benefits, e.g. carbon sequestration)

Central part of one of the two experimental timber bunds in the River Seven catchment

How (well) can we mitigate flooding? Beavers nonsense!

Imagine your home is flooded. Lots of beaver colonies then? Extra water storage behind dams: $\sim 1100 \mathrm{m}^3 = 1.1 \mathrm{M}$ litres (or $1/5^{\mathrm{th}}$).

How beavers can help stop homes from flooding

O 17 Feb 2020 Lost updated at 11:08

Beavers can play an important role in helping to keep our homes from being flooded.

That's according to scientists at Exeter University, who have carried out a five year study of wild animals living in Devon.

Dredging –Wainfleet Flood Action Group (flood June 2019, 67 homes & lots of farmland flooded):

LIFD

Resilience: raising of new houses now mandatory in Wainfleet

Resilience: responsible flood-plain development (zero-sum or negative volume rule), Rhine valley:

On waves On floods

Graphical cost-effectiveness tool: square lake

S1: FEV $\approx 2161^2 \text{m}^2 \text{ x } 2\text{m} \approx 9.34 \text{Mm}^3$

Graphical cost-effectiveness tool: square lake scenarios

Weather in Wetropolis: skew Galton boards

Ball falls through, peak chance at 7/16 & "rare" event at 1/16:

LIFD

Weather in Wetropolis: two skew Galton boards

Two Galtonboards, one rain duration & one for rain location:

Wetropolis' weather: probability and statistics

- X, Q: probabilities p_i rainfall duration/wd versus q_j rain location:
- ▶ p_i, q_j with i, j = 1, 2, 3, 4 and $\sum p_i = 1, \sum q_j = 1$.
- For old case, $p_1 = q_1 = 3/16$, $p_2 = q_2 = 7/16$, $q_3 = p_3 = 5/16$, $q_4 = p_4 = 1/16$:

Table: Probability matrix $P_{ij} = p_i q_j$ times 256.

	1s	2s	4 s	9s
	p_1	p_2	p 3	p_4
reservoir q_1	9	21	15	3
both q_2	21	49	35	7
moor q ₃	15	35	25	5
no rain <i>q</i> 4	3	7	5	1

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Return period of floods: geometric distribution

- Rain amount per T_d = 10s = 1wd determined by tuning: no to minor flooding for (1, 2, 4) & (8, 9), flooding for 18 units.
- ▶ Return period T_r of extreme flooding at $t_n = nT_d$ determined by geometric distribution with here $p_n = (1 - p_e)^{n-1}p_e$ where $p_e = P_{24} = q_2p_4 = 7/256$, s.t.

$$T_r = \mathbb{E}(t_n) = \sum_{n=1}^{\infty} T_d n (1-p_e)^{n-1} p_e = \frac{T_d}{p_e} \approx 365.7 \text{s} \approx 6:06 \text{min.}$$

Standard deviation σ_r (thanks to Daan C & Jason F):

$$\sigma_r^2 = \mathbb{E}\left((t_n - \mathbb{E}(t_n))^2\right) = (1 - p_e)\frac{T_d^2}{p_e^2}$$
$$= (1 - p_e)T_r^2 \Longrightarrow \sigma_r = 36.07 \text{wd} = 360.7 \text{s} \approx 6 \text{min.}$$

Super- and megafloods: geometric distribution of order k

► Two consecutive "2015 Boxing Days" extreme rainfall WEP $p_e^2 = (7/256)^2$ s.t.

$$T_r^{(2)} pprox rac{T_d}{
ho_e^2} = (256/7)^2 imes 10 {
m s} pprox 223 {
m min} pprox 3 : 43 {
m hr}.$$

Movie "Wetropolis Boxing Day flood" on https://github.com/obokhove/wetropolis20162020

• $T_r^{(2)} \& \sigma_r^{(2)}$ follow from geometric distribution of order k = 2 (Viveros & Balakrishnan 1993, Koutras & Eryilmaz 2017):

$$\frac{T_r^{(k)}}{T_d} = \frac{(1-p_e^k)}{(1-p_e)p_e^k}, \quad \frac{\sigma_r^{(k)}}{T_d} = \frac{\sqrt{1-(2k+1)(1-p_e)p_e^k - p_e^{2k+1}}}{(1-p_e)p_e^k}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 めへで

Super- and megafloods: Wetropolis revisited design

For floods on two consecutive days with old $p_e = 7/256$:

$$T_r^{(2)} = T_d \frac{(1+p_e)}{p_e^2} = 1374 \text{wd} = 13740\text{s} = 3.8 \text{hr},$$

$$\sigma_r^{(2)} = T_d \frac{\sqrt{1-5(1-p_e)p_e^3 - p_e^5}}{(1-p_e)p_e^3} = 3.8 \text{hr}.$$

▶ Long waiting times suggest redesign, e.g. take Galton board outcome p_e = p₂q₂ = 49/256 ≈ 1/5 for 9s rainfall in moor & reservoir, yielding return periods for k = 2, 3-day floodings:

$$T_r = 5.2 \text{wd} = 52 \text{s}, T_r^{(2)} = 32.5 \text{wd} = 5 : 25 \text{min},$$

 $T_r^{(3)} = 175 \text{wd} = 29 : 11 \text{min}, \sigma_r^{(k)} \approx T_r^{(k)}, k = 1, 2, 3.$

I IED

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Wetropolis' weather: revisited

X, Q: probabilities p_i rainfall duration/wd versus q_j rain location:

▶ p_i, q_j with i, j = 1, 2, 3, 4 and $\sum p_i = 1, \sum q_j = 1$.

For current case, $p_1 = q_1 = 3/16$, $p_2 = q_2 = 7/16$, $q_3 = p_3 = 5/16$, $q_4 = p_4 = 1/16$:

Table: Probability matrix $P_{ij} = p_i q_j$ times 256.

	1s	7 s	4 s	2s
	p_1	p_2	p 3	p_4
reservoir q ₁	9	21	15	3
both q_2	21	49	35	7
moor <i>q</i> 3	15	35	25	5
no rain <i>q</i> 4	3	7	5	1

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Climate probability and statistics

Revisit rain durations by adding extra rain in upstream lake w. pump of fraction $0 \le r_e < 1$ per unit relative & synced to the moor

	$r_1 = 1$	$r_2 = 2$	$r_3 = 4$	$r_4 = 9$
	ρ_1	<i>p</i> ₂	p ₃	p_4
reservoir q_1	<i>r</i> ₁	<i>r</i> ₂	<i>r</i> ₃	<i>r</i> ₄
both q2	$(2 + r_e)r_1$	$(2 + r_e)r_2$	$(2 + r_e)r_3$	$(2 + r_e)r_4$
moor <i>q</i> ₃	$(1 + r_e)r_1$	$(1 + r_e)r_2$	$(1 + r_e)r_3$	$(1 + r_e)r_4$
no rain <i>q</i> 4	0	0	0	0

Table: Rain duration with $P_{ij} = p_i q_j$ times 256.

Accumulation yields total mean volume of rain water R entering set-up per s, scaled by pump rate r₀:

$$R/r_0 = ((q_1 + 2q_2 + q_3) + r_e(q_2 + q_3))(r_1p_1 + r_2p_2 + r_3p_3 + r_4p_4)$$

=4.5 + 2.2r_e \approx 4.5(1 + 0.2) for $r_e = 0.5$.

Floods, droughts & climate

Droughts -reformulate elegantly w. 2 or 3 stochastic variables?

- 4wd-drought: $T_r^d = T_d(1 q_4^4)/q_4^4/(1 q_4) = 194$ hr with $q_4 = 1/16$. Too long!
- To visualise drought for 1/16th route of dry day, use outcome of 1st Galton board (unused in absence of rainfall) e.g., with (p₂ + p₃, p₁ + p₄) = (3, 1)/4 probability.
- For p₁ + p₄ = 1/4—case, enforce 4wd drought, visualised by drink-water pipe from moor falling dry: no water supply!
- New probabilities then adjust to rainfall in reservoir, moor & reservoir, moor, no rain on 1wd & no rain for 4wd:

$$(q_1, q_2, q_3, q_4, q_5) = (12, 28, 20, 3, 4)/67?$$

- Drought return period: $T_r^d = 67 \times 10 \text{s} = 11 : 10 \text{min}$?
- New return period: $T_r = (16x67/28)x10s = 6: 23min?$

LIFD

Wetropolis models

Kinematic river flow in design model; 1D predictive shallow-water river model with ground-water & reservoir dynamics, in progress (PDEs & ODEs: B. et al, HESS, 2020). Bathymetry:

Wetropolis modelling

Simulations, https://github.com/tkent198/hydraulic_wetro:

きょうかん 聞 エルド・エル・トロート

Wetropolis investigator

How can a Wetropolis laboratory set-up and a Numerical Wetropolis Prediction model be used to understand:

- risk, extreme weather & flooding probability statistics –revisit spatial-temporal rainfall & change-point analysis;
- rare-event simulations (for events of "intermediate rarity");
- flood control –e.g., reservoirs in Wetropolis;
- data assimilation & parameter estimation –experiment as "truth run"; test (failure of) machine learning.
- spatial-temporal nature of flood-mitigation measures -see linear algebra in B, Kent, Kelmanson 2018?
- ► Wetropolis for urban surface flash flooding? Can be done!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Monster assimilation & adaptation in floods

High Beck fluvial flood-mitigation case study: Knotters, B., Lamb, Poortvliet (2024) Cambridge Prisms Water.

Uncertainty monsters in Flood-Risk Management (FRM)

Knotters et al. (2024) use the monster metaphor to propose six (coping) strategies to deal with uncertainties FRM. **Monster**

- exorcism, reduce uncertainty even if it is not realisable.
- embracement, trivialization by magnifying uncertainties.
- denial, <u>Concorde effect</u>: limited viability yet continued investment, e.g., of some NFM (upscaling fails, e.g. using beavers) of higher-and-higher flood walls.
- anesthesia, uncertainty "prevented" by striving for consensus or agreeing about quality of information.
- adaptation, adjust uncertainty, rationalise risk mitigation & optimise chosen utility (function). UK-EA: blended approach.
- assimilation, learn from uncertainty (quantification) & accordingly make changes.

LIFD

High Beck flood-mitigation case study (50yrs)

- Square-lake plots: size & costs with flood-excess volume & mitigation measures.
- Base costs q_i , probability failure p_i , repair costs q_{p_i} , i = 1, 2, 3; costs $q_i + p_i q_{p_i}$.
- Combine Canal C1, bund B2, flood-plain-storage FP3 into 5 scenarios:

- Utility functions: $U_1 = \sum_{j=1}^{5} w_j C_j$, $U_2 = \sum_{j=1}^{5} (w_j C_j \sum_{k=1}^{N_j} \alpha_{kj} B_{jk})$ (co-benefits B_{ik} : e.g., droughts, extra CC, less pollution), decision tree.
- Difficult to get 9 values but U₂ yields new insights on appreciating benefits.

LIFD

Thanks very much for your attention ...

- Knotters, B, Lamb, Poortvliet 2024: How to cope with uncertainty monsters in flood risk management? Water Prisms. https://doi.org/10.1017/wat.2024.4
- B, Kelmanson, Piton, Tacnet 2024: Visualising Flood Frequency, Flood Volume and Mitigation of Extreme Events.

 $https://obokhove.github.io/UK success {\sf FEV} preprint 23102023.pdf$

- B 2022: Wetropolis video for general public https://www.youtube.com/watch?v=rNgEqWdafKk
- B, Kelmanson, Hicks, Kent: 2022: Flood mitigation: from outreach demonstrator to a graphical cost-effectiveness diagnostic for policy makers. UK Research Excellence Framework Impact Case Study. https:

 $// {\tt results2021.ref.ac.uk/impact/submissions/1eedb5bd-8f92-4737-a6f0-1e61c997e4f0/impact}$

B 2021: On communicating cost-effectiveness of flood-mitigation schemes. Angers, France. ESREL.

https://www.rpsonline.com.sg/proceedings/9789811820168/html/134.xml

- B, Hicks, Kent, Zweers 2020: Wetropolis extreme rainfall and flood demonstrator: from mathematical design to outreach and research. Hydrology and Earth System Sciences 24. Full design: https://github.com/obokhove/wetropolis20162020
- Pacala, S. and Socolow, R. 2004: Stabilization wedges: solving climate problem for next 50 years w current technologies. *Science* 305
- Maths laboratory designs: https://github.com/obokhove/MathslaboratoryUoL, < = , </p>