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Motivation on modelling extremely high water waves

• Origin 2010 bore-soliton-splash:

• To what extent do exact but idealised

extreme- or rogue-wave solutions survive

in more realistic settings?

• Will such extreme waves fall apart due to

dispersion or other mechanisms?

• Use fourfold and ninefold KP

amplifications of interacting

solitons/cnoidal waves.

• What do you think: will we be able to

reach the ninefold wave amplification in

more realistic calculations, using

potential-flow dynamics, or in reality?

Bokhove Extreme water-wave amplification

https://www.youtube.com/watch?v=YSXsXNX4zW0


Mathematical hierarchy: PFE, BLE & KPE approximations

 Boussinesq-type approximation: includes weak dispersive e↵ects

• KdV equation: wave propagation in 1D [Korteweg & de Vries, 1895]

• KPE equation: unidirectional propagation in 2DH

[Kadomtsev & Petviashvili, 1970]

• Benney-Luke equations –BLE: bidirectional propagation in 2DH

[Benney & Luke, 1964]
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z = 0

✏ = ↵0/H0 ⌧ 1

µ = (H0/`0)2 ⌧ 1

Expansion about the sea-bed potential �(x, y, t) = �(x, y, z = 0, t),

in powers of the small parameter µ [Pego & Quintero, 1999]

• More realistic or parent potential-flow equations (PFE).
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Kadomtsev-Petviashvili (KPE) equation

The KPE equation can be obtained from the Benney-Luke equations by

introducing the formal perturbation expansions
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with µ = ✏2 (in the VP), resulting in the KPE equation in “standard”

form

@X (4@⌧u+ 6u@Xu+ @XXXu) + 3@Y Y u = 0

This equation includes weak e↵ects in the y-direction.
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Exact solution of the KP equation

Web and line-soliton solutions can be constructed using Hirota’s transformation
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where function K(X,Y, ⌧) can be obtained from the Wronskian
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Particular soliton solutions are obtained by taking [Kodama, 2010]

fi =
MX

j=1

aij e
✓j , where ✓j = kjX + k

2
jY � k

3
j ⌧,

with coe�cients kj being ordered as k1 < k2 < · · · < kM . This solution is

called a (N�, N+)-soliton, comprising line solitons in the far-field Y ! ±1.
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Example: single line soliton

Single line solitons have (N,M) = (1, 2), resulting in K = f1 = e✓1 + e✓2

and the line soliton solution is
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�
.

The soliton amplitude is Ã = 1
2 (k1 � k2)2 and its centreline is found by

setting the sech2 argument to zero.
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Example: two interacting line solitons

Two line solitons have (N,M) = (2, 4), also called (2, 2)-solitons or O-solitons,
obtained with functions f1 = e✓1 + e✓2 , f2 = e✓3 + e✓4 , and

K(X,Y, ⌧) = (k3�k1)e
✓1+✓3 +(k3�k2)e

✓2+✓3 +(k4�k1)e
✓1+✓4 +(k4�k2)e

✓2+✓4 .

In the far field Y ! ±1, we find the single line solitons
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2
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where a, b depend on kj . For equal far-field soliton

amplitudes Ã = 1
2 (k2 � k1)

2 = 1
2 (k4 � k3)

2, the

solution satisfies [Kodama, 2010]
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where 0  �o  1, hence 2Ã  maxu  4Ã .
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Example: three interacting line solitons

Three line solitons, known as (3, 3)-solitons, have (N,M) = (3, 6) and

functions f1 = e✓1 + e✓2 , f2 = e✓3 + e✓4 , f3 = e✓5 + e✓6 , and

K(X, Y, ⌧) = A135 e✓1+✓3+✓5 + A235 e✓2+✓3+✓5 + A136| {z } e✓1+✓3+✓6 + A236 e✓2+✓3+✓6

+ A145 e✓1+✓4+✓5 + A245 e✓2+✓4+✓5 + A146| {z } e✓1+✓4+✓6 + A246 e✓2+✓4+✓6 ,

with parameter ordering k1 < k2 < k3 < 0 < k4 < k5 < k6 & a, b = 1, c.

In the far field Y ! ±1, we find the single line solitons
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⇣
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Example: three interacting line solitons

Parameters k1, . . . , k6 are determined from

k3 + k4 = 0

k5 + k6 = �(k1 + k2) = tan ✓
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2 is the

amplitude of the [3, 4]

soliton, and the outer two

solitons are assumed to have

amplitude Ã/�, for � � 1.
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Maximum 9-fold amplification in KP

• Proof is based on a geometric argument (additional secondary proof)

• Find 5 centrelines of each of three line solitons (no phase shift at peak)

• Look for intersection points  this gives two values of Y , with mean at a

unique point Y⇤�!0 ! �1 when ⌧⇤ = 0 and X⇤ = 0

• The space-time point of maximum amplification is (X⇤, Y⇤, ⌧⇤)

• Amplification:
u(X⇤, Y⇤, ⌧⇤)
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Proof of maximum 9-fold amplification in KP

• Three shift parameters a, b = 1, c = 1/a can be optimised such that

splash occurs at (X⇤
, Y

⇤
, ⌧

⇤) = (0, 0, 0).

• Amplification

u(X⇤
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, ⌧
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p
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2� � 19 23/4
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• Principle Minor Theorem proves that (X⇤
, Y

⇤
, ⌧

⇤) is a maximum.

• Involved and combined geometrical and analytical proofs

(WW2022-2024).

Bokhove Extreme water-wave amplification



Numerical implementation

An automated system for the solution of PDEs

using the Finite Element Method (FEM).

Firedrake employs Unified Form Language (UFL) and linear &

non-linear solvers PETSc solvers [Rathgeber et al., 2016].

• Space-time discretisation 2nd order of variational principle for

BLE: bounded energy oscillations, phase-space conserved.

• Continuous Galerkin (CG) FEM in space for VP, with

approximations & test functions/variations �⌘h, ��h:

⌘(x, y, t) ⇡ ⌘h(x, y, t) =
X

k

⌘k(t)wk(x, y), . . .

• Symplectic Störmer-Verlet & MMP time stepping schemes.

• Stable numerical scheme: no artificial amplitude damping . . .
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5. Firedrake: exciting aspects & VPs

• Exciting novel & pursued development is to implement

(time-discrete) VPs directly via command “derivative”.

• Advantages: stunning reduction time-to-development.

• New codes more versatile: horizontal mesh with spectral GLL

combined with (i) vertical elements with GLL or (ii) 1 vertical

element with high-order spectral GLL.

• Firedrake has (automated) MPI-HPC, various preconditioners

and also time-integration options.
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Computational domain: ⇠cnoidal waves

• KPE solutions hold on infinite horizontal plane, so domain has

to be su�ciently large to eliminate reflection at boundaries.

• Solutions can be set to become approximately periodic in

su�ciently large domains.

• Transform � = U0(y)x+ c0(y) + �̃, where �̃ is periodic, then

solve the BLE for ⌘ and �̃.

• Doubly or singly periodic domain?
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Initial conditions and boundaries

Initial condition consists of two (SP2) or three (SP3) line solitons,

expressions of which are known from the KP-solution:

⌘0(x, y) = ⌘(x, y, t0) = 2
⇣4
3

⌘1/3
@XX lnK(X,Y, ⌧),

�0(x, y) = �(x, y, t0) = 2
p
✏
⇣4

p
2

9

⌘1/3
@X lnK(X,Y, ⌧).

Computational domain is constructed such that initial condition

satisfies “periodic boundary conditions” in x–direction.

Case Lx Ly T Nx Ny �x = Lx
Nx

�y = Ly

Ny
�t

SP2 10.3 40 50 132 480 0.0779 0.0833 0.005

SP3 20.9 47 200 252 564 0.0829 0.0833 0.005
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Results BLE-simulation three-soliton interaction
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Results simulation three-soliton interaction (dimensional)

Crossing seas (4 or 8 domains combined –YouTube)

Bokhove Extreme water-wave amplification

BLE_KPE_Atilde05-4.mp4
https://www.youtube.com/watch?v=EGhpQ7BM2jA


Results simulation three-soliton interaction (dimensional)

Cnoidal waves with periodicity in x, y, t (max. vs. t & x–y tracks):
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Results BLE-simulations three-soliton interactions

• KPE with {✏ = 0.05, � = 10�10
, 9�⇥} seeding of BLE simulation yields

7.5 to 8.5⇥ amplification tBLE 2 [�60, 20].
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Results BLE- & PFE-simulations three-soliton interactions

• Demanding PFE simulations: HPC simulation with optimised Additive

Schwarz Method-Star pre-conditioner. Amplification 7.5 to 8 at low

✏ = 0.01, � = 10�5.
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Potential-flow P-type two-soliton/cnoidal interactions

• Sketch (thanks to Prof Yuji Kodama) and exact KPE-solution.

• K(X, Y, ⌧) = (k3 � k1)e
✓1

⇣
e✓3 +

k2�k1
(k3�k1)

e✓2
⌘
+ (k4 � k3)e

✓4
⇣
e✓3 +

(k4�k2)
(k4�k3)

e✓2
⌘
,

wherein ✓i = kiX + k2
i Y � k3

i ⌧ , k1 = �k4 < k2 = k1 + � < k3 = � < k4, � = 10�5.
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Potential-flow P-type two-soliton interactions

• Demanding PFE simulations with a travelling-wave P-type web-soliton

with amplitude 4, wavelength 400m, wave height 1.6m, ✏ = 0.05.
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Summary

• 9-fold soliton amplification proven, when � ! 0 & (X,Y, ⌧) = (0.0.0)

• Web-soliton amplification of KPE is 9�, seeding BLE-PFE simulations

with amplifications ⇡ 7.8 & 8.5

• It is open question how to reach higher amplitudes and set up

three-soliton-amplification experiments (continuation).

• We used novel geometric discretisation of time-discrete VPs, automated

via Firedrake, with reduction-of-time-to-development & MPI-HPC.

• Smoothness of the computational “periodisation” is suboptimal. A new

P-type web-soliton yields better simulations with higher amplitudes:
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