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Motivation on modelling extremely high water waves

e Origin 2010 bore-soliton-splash:

e To what extent do exact but idealised
extreme- or rogue-wave solutions survive
in more realistic settings?

e Will such extreme waves fall apart due to
dispersion or other mechanisms?

e Use fourfold and ninefold KP
amplifications of interacting
solitons/cnoidal waves.

e What do you think: will we be able to
reach the ninefold wave amplification in
more realistic calculations, using
potential-flow dynamics, or in reality?
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https://www.youtube.com/watch?v=YSXsXNX4zW0

Mathematical hierarchy: PFE, BLE & KPE approximations

~+ Boussinesq-type approximation: includes weak dispersive effects
e KdV equation: wave propagation in 1D [Korteweg & de Vries, 1895]
e KPE equation: unidirectional propagation in 2DH
[Kadomtsev & Petviashvili, 1970]
e Benney-Luke equations —BLE: bidirectional propagation in 2DH
[Benney & Luke, 1964]

tog e=ay/Hy <1

( = (Ho/b)* < 1
H, 0 = (Ho/to)

z=0

Expansion about the sea-bed potential &(z,y,t) = ¢(x,y,z = 0,1),
in powers of the small parameter p [Pego & Quintero, 1999]

e More realistic or parent potential-flow equations (PFE).
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Kadomtsev-Petviashvili (KPE) equation

The KPE equation can be obtained from the Benney-Luke equations by

introducing the formal perturbation expansions

n=+0(@), o= Ve(T+0(),

using the transformations
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with g = €2 (in the VP), resulting in the KPE equation in “standard”

form
[aX (487—’[1, + 6u8Xu + BXXXu) + 38yyu = Oj

This equation includes weak effects in the y-direction.
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Exact solution of the KP equation

Web and line-soliton solutions can be constructed using Hirota's transformation

2
u(X,Y,7) =20xx n K(X,Y,7) = 20xx K —Q(aXK) ,

K K

where function K (X,Y,7) can be obtained from the Wronskian
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Particular soliton solutions are obtained by taking [Kodama, 2010]
M

fi=> aie’, where 0; =k;X + kY — kT,
j=1

with coefficients k; being ordered as k1 < k2 < --- < kns. This solution is

called a (N_, N4 )-soliton, comprising line solitons in the far-field ¥ — +o0.
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Example: single line soliton

Single line solitons have (N, M) = (1,2), resulting in K = f; = et + e
and the line soliton solution is

1 1
u(X,Y,7) = 5 (b — kzg)Qsech2§(91 —6)

1 1
— §(k1 — k2)2sech2§((k1 — ko)X + (kF — k3)Y — (K} — k3)7).

The soliton amplitude is A = %(kl — k2)? and its centreline is found by
setting the sech? argument to zero.

=0
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Example: two interacting line solitons

Two line solitons have (N, M) = (2,4), also called (2, 2)-solitons or O-solitons,
obtained with functions f; = el o+ egz, fo= el + e94, and

K(X,Y,7) = (kg —k1)e” 795 4 (ks — k2)e? 05 4 (ky — k1 )e” 704 4 (ky — k)e2+04.
In the far field Y — 400, we find the single line solitons
1 2 21
w9 (X, Y, 1) = i(kz — k1)“sech 5(91 — 602 —Ina),
1 2 21
U[3,4] (X,Y:T) = 5([&‘4 — k‘3) sech 5(93 — 04 — lnb),

where a, b depend on k;. For equal far-field soliton
amplitudes A = 1 (ka — k1) = 1 (ka — k3)?, the
solution satisfies [Kodama, 2010]

24 < max uw(X,Y,7) <2 (1 + ﬂ) A,
(X,Y,1) 1+ VA,

where 0 < A, < 1, hence 24 < maxu < 44|,
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Example: three interacting line solitons

Three line solitons, known as (3, 3)-solitons, have (N, M) = (3,6) and
functions f1 = e/t +¢e%2, fo =% + %, f3 =% + %, and

K(X,Y,7) = A135 P1T03H05 4 4555 6%2H03F05 4 4,54 01703706 1 4,56 0027103 +0%

o+ Args 10405 4 4y 502104405 o 4y 01704706 1 Ay 500210406,

with parameter ordering k1 < ko < k3 < 0 < ks < ks < ke & a,b=1,c.
In the far field Y — 00, we find the single line solitons
1 1

up1,9) A §(k2 — k1)? sech? 5 (01— 62— Ina),

1 1 ~
u[5,6] ~ 5(166 — /435)2 sech2 5(95 — 96 —In b),

1 1
Upz,q) E(1<:4 — k3)? sech? 5(93 —64),

with 0; — 0, = (ki — k;) (X + (ki + k)Y — (K2 + Kk + kf.)f).

Bokhove Extreme water-wave amplification



Example: three interacting line solitons

Parameters k1, ..., ke are determined from
where angle 6 > 0,
ks + ks =0 A= L(ky — ky)? is the
ks + ke = —(k1 + k2) = tan 0 amplitude of the [3, 4]
fea — ks = \/ﬁ soliton, and the outer two
solitons are assumed to have
ke — ks = ko — k1 = /2A/X amplitude A/X, for A > 1.

Solving the above six equations, gives
ke = —k1 = VA (\/2/)\ /12 + 5)
ks = —ko = \/X(\/l/2+5>

ko = —ks =/A/2

where 0 is defined by

5= ;3:;% — (VIPA+Vif2) > 0.
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Maximum 9-fold amplification in KP

e Proof is based on a geometric argument (additional secondary proof)
e Find 5 centrelines of each of three line solitons (no phase shift at peak)

e Look for intersection points ~~ this gives two values of Y, with mean at a
unique point Yi5_.9 — —oo when 7. =0 and X, =0

e The space-time point of maximum amplification is (X, Yi, 7.)

w(Xs, Y, ) (VA+2)? 4 4
- = OWo) — 1+~ + —
A A FOWO) T 1+ x T VA

A=1.0,1.05,..., 1.5
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Proof of maximum 9-fold amplification in KP

e Three shift parameters a,b = 1,¢ = 1/a can be optimised such that
splash occurs at (X™*,Y*,7") = (0,0,0).

e Amplification
w(X*, Y, 7)) A =9 — 832V + 1626 — 1923/41/35%/%/3
e Principle Minor Theorem proves that (X*, Y™, 7%) is a maximum.

e Involved and combined geometrical and analytical proofs
(WW2022-2024).
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Numerical implementation

‘3‘ Fire dra k,e An automated system for the solution of PDEs
using the Finite Element Method (FEM).

Firedrake employs Unified Form Language (UFL) and linear &
non-linear solvers PETSc solvers [Rathgeber et al., 2016].

e Space-time discretisation 2nd order of variational principle for
BLE: bounded energy oscillations, phase-space conserved.

e Continuous Galerkin (CG) FEM in space for VP, with
approximations & test functions/variations dny,, 0®p:

n(x,y,t) = nu(z,y,t) = an(t)wk(ac, v), ...
k

e Symplectic Stormer-Verlet & MMP time stepping schemes.

e Stable numerical scheme: no artificial amplitude damping . ..
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5. Firedrake: exciting aspects & VPs

e Exciting novel & pursued development is to implement
(time-discrete) VPs directly via command “derivative’.

e Advantages: stunning reduction time-to-development.

e New codes more versatile: horizontal mesh with spectral GLL
combined with (i) vertical elements with GLL or (ii) 1 vertical
element with high-order spectral GLL.

e Firedrake has (automated) MPI-HPC, various preconditioners
and also time-integration options.
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Computational domain: ~cnoidal waves

e KPE solutions hold on infinite horizontal plane, so domain has
to be sufficiently large to eliminate reflection at boundaries.

e Solutions can be set to become approximately periodic in
sufficiently large domains.

e Transform & = Uy(y)x + co(y) + @, where & is periodic, then
solve the BLE for n and &.

e Doubly or singly periodic domain?

Maximum A max/A
0.116 8
0.8 === whole —— half == — whole —— half — whole  —— half
o 0.114 ; Aaa
0.7 0.112
0.110 # 6
0.6 0.108 4 i F’,‘.i )
0.106 *{ ‘ Al 5
0.5 ' ]
0.104 f
a
0.4 0.102

-200-175-150-125-100 -75 -50 -25 0O -200-175-150-125-100 -75 -50 -25 0 -200-175-150-125-100 -75 -50 -25 0O
ime time time

Bokhove Extreme water-wave amplification



Initial conditions and boundaries

Initial condition consists of two (SP2) or three (SP3) line solitons,
expressions of which are known from the KP-solution:

4\1/3
mo(e,y) = (@ yto) = 2(3)  Oxx MK(X,Y,7),
42
Bo(e,y) = B0, t0) = 22 (22) o m (X, .7,
Computational domain is constructed such that initial condition
satisfies “periodic boundary conditions” in z—direction.

Case | Ly [ Ly | T | No | Ny | Av=%= | Ay=5 | At
SP2 | 103 | 40 | 50 | 132|480 | 0.0779 | 0.0833 | 0.005
SP3 [ 209 | 47 [ 200 | 252 | 564 | 0.0829 | 0.0833 | 0.005
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Results BLE-simulation three-soliton interaction
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Results simulation three-soliton interaction (dimensional)

Crossing seas (4 or 8 domains combined —You Tube)

Time: 0.0(s)
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BLE_KPE_Atilde05-4.mp4
https://www.youtube.com/watch?v=EGhpQ7BM2jA

Results simulation three-soliton interaction (dimensional)

Cnoidal waves with periodicity in x,y,t (max. vs. ¢t & z—y tracks):

Bokhove
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Results BLE-simulations three-soliton interactions

o KPE with {e¢ = 0.05,6 = 107,97 x} seeding of BLE simulation yields

7.5 to 8.5x amplification tprLe € [—60,20].
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Results BLE- & PFE-simulations three-soliton interactions

e Demanding PFE simulations: HPC simulation with optimised Additive
Schwarz Method-Star pre-conditioner. Amplification 7.5 to 8 at low
€=0.01,6 =107°.
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Potential-flow P-type two-soliton/cnoidal interactions

e Sketch (thanks to Prof Yuji Kodama) and exact KPE-solution.
— 0 6 ko—k 3 0 (kg—ko) 0

o K(X,Y,7)= (kg — k1)elt (% + 2Ry’ 2) + (ka — kg)ef4 (e s 4 (k= 2),r

wherein 0; = k; X + k2Y — k37, k1 = —ky < kp =k, +06 < ks =8 < kg, 0 = 1077,

wiX,Y, T=3.00) WX, Y, T=3.00)
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Potential-flow P-type two-soliton interactions

e Demanding PFE simulations with a travelling-wave P-type web-soliton
with amplitude 4, wavelength 400m, wave height 1.6m, € = 0.05.
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Summary

e O-fold soliton amplification proven, when § — 0 & (X,Y,7) = (0.0.0)

e Web-soliton amplification of KPE is 97, seeding BLE-PFE simulations
with amplifications ~ 7.8 & 8.5

e [t is open question how to reach higher amplitudes and set up
three-soliton-amplification experiments (continuation).

e We used novel geometric discretisation of time-discrete VPs, automated
via Firedrake, with reduction-of-time-to-development & MPI-HPC.

e Smoothness of the computational “periodisation” is suboptimal. A new
P-type web-soliton yields better simulations with higher amplitudes:
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